269 research outputs found

    A local Fock-exchange potential in Kohn–Sham equations

    Get PDF
    We derive and employ a local potential to represent the Fock exchange operator in electronic single-particle equations. This local Fock-exchange (LFX) potential is very similar to the exact exchange (EXX) potential in density functional theory (DFT). The practical software implementation of the two potentials (LFX and EXX) yields robust and accurate results for a variety of systems (semiconductors, transition metal oxides) where Hartree–Fock and popular approximations of DFT typically fail. This includes examples traditionally considered qualitatively inaccessible to calculations that omit correlation

    Topological triplon modes and bound states in a Shastry–Sutherland magnet

    Get PDF
    The twin discoveries of the quantum Hall effect, in the 1980's, and of topological band insulators, in the 2000's, were landmarks in physics that enriched our view of the electronic properties of solids. In a nutshell, these discoveries have taught us that quantum mechanical wavefunctions in crystalline solids may carry nontrivial topological invariants which have ramifications for the observable physics. One of the side effects of the recent topological insulator revolution has been that such physics is much more widespread than was appreciated ten years ago. For example, while topological insulators were originally studied in the context of electron wavefunctions, recent work has led to proposals of topological insulators in bosonic systems: in photonic crystals, in the vibrational modes of crystals, and in the excitations of ordered magnets. Here we confirm the recent proposal that, in a weak magnetic field, the dimerized quantum magnet SrCu2_{2}(BO3_{3})2_2 is a bosonic topological insulator with nonzero Chern number in the triplon bands and topologically protected chiral edge excitations.Comment: 33 pages, 14 figures (preprint format and including supplementary material

    Suppression of thermal conductivity without impeding electron mobility in n-type XNiSn half-Heusler thermoelectrics

    Get PDF
    We outline a strategy to improve the thermoelectric performance of n-type XNiSn based half-Heusler alloys through Cu doping into vacant tetrahedral sites. A comprehensive combination of structural characterisation and modelling is employed to discriminate the competing mechanisms for thermoelectric enhancement. During synthesis a mineralising effect occurs that improves the homogeneity of the alloying elements Ti, Zr and Hf, and promotes grain growth, leading to a doubling of the electron mobility. In the formed materials, Cu is a strong n-type dopant, like Sb, but occupies the interstitial site and strongly enhances phonon scattering without diminishing carrier mobility (in contrast to interstitial Ni). Simultaneous alloying with Ti, Zr and Hf serves to minimise the thermal conductivity via regular mass disorder and strain effects. A best electronic power factor, S2/ρ, of 3.6 mW m−1 K−2 and maximum ZT of 0.8 at 773 K were observed for a Ti0.5Zr0.25Hf0.25NiCu0.025Sn composition, enabling promising device power densities of ∼6 W cm−2 and ∼8% conversion efficiency from a 450 K gradient. These findings are important because they provide new insight into the mechanisms underpinning high ZT in the XNiSn system and indicate a direction for further improvements in thermoelectric performance

    The MOLDY short-range molecular dynamics package

    Full text link
    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy

    Structure and spectroscopy of CuH prepared via borohydride reduction

    Get PDF
    Copper(I) hydride (cuprous hydride, CuH) was the first binary metal hydride to be discovered (in 1844) and is singular in that it is synthesized in solution, at ambient temperature. There are several synthetic paths to CuH, one of which involves reduction of an aqueous solution of CuSO(4)·5H(2)O by borohydride ions. The product from this procedure has not been extensively characterized. Using a combination of diffraction methods (X-ray and neutron) and inelastic neutron scattering spectroscopy, we show that the CuH from the borohydride route has the same bulk structure as CuH produced by other routes. Our work shows that the product consists of a core of CuH with a shell of water and that this may be largely replaced by ethanol. This offers the possibility of modifying the properties of CuH produced by aqueous routes
    corecore